642
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Identifying factors affecting the safety of mid-block bicycle lanes considering mixed 2-wheeled traffic flow

, , &
Pages 761-766 | Received 11 Jun 2016, Accepted 02 Mar 2017, Published online: 24 May 2017
 

ABSTRACT

Objective: Electric bikes (e-bikes) have been one of the fastest growing trip modes in Southeast Asia over the past 2 decades. The increasing popularity of e-bikes raised some safety concerns regarding urban transport systems. The primary objective of this study was to identify whether and how the generalized linear regression model (GLM) could be used to relate cyclists' safety with various contributing factors when riding in a mid-block bike lane. The types of 2-wheeled vehicles in the study included bicycle-style electric bicycles (BSEBs), scooter-style electric bicycles (SSEBs), and regular bicycles (RBs).

Methods: Traffic conflict technology was applied as a surrogate measure to evaluate the safety of 2-wheeled vehicles. The safety performance model was developed by adopting a generalized linear regression model for relating the frequency of rear-end conflicts between e-bikes and regular bikes to the operating speeds of BSEBs, SSEBs, and RBs in mid-block bike lanes.

Results: The frequency of rear-end conflicts between e-bikes and bikes increased with an increase in the operating speeds of e-bikes and the volume of e-bikes and bikes and decreased with an increase in the width of bike lanes. The large speed difference between e-bikes and bikes increased the frequency of rear-end conflicts between e-bikes and bikes in mid-block bike lanes. A 1% increase in the average operating speed of e-bikes would increase the expected number of rear-end conflicts between e-bikes and bikes by 1.48%. A 1% increase in the speed difference between e-bikes and bikes would increase the expected number of rear-end conflicts between e-bikes/bikes by 0.16%.

Conclusions: The conflict frequency in mid-block bike lanes can be modeled using generalized linear regression models. The factors that significantly affected the frequency of rear-end conflicts included the operating speeds of e-bikes, the speed difference between e-bikes and regular bikes, the volume of e-bikes, the volume of bikes, and the width of bike lanes. The safety performance model can help better understand the causes of crash occurrences in mid-block bike lanes.

Funding

This research was jointly sponsored by the Scientific Research Foundation of Graduate School of Southeast University and the Innovation Project of Science and Technology for College Graduates of Jiangsu Province.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.