681
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of near crashes among teen, young adult, and experienced adult drivers using the SHRP2 naturalistic driving study

, , , , , , , , & show all
Pages S89-S96 | Received 01 Apr 2017, Accepted 06 Dec 2017, Published online: 27 Mar 2018
 

ABSTRACT

Objective: Motor vehicle crashes are the leading cause of death among young drivers. Though previous research has focused on crash events, near crashes offer additional data to help identify driver errors that could potentially lead to crashes as well as evasive maneuvers used to avoid them. The Strategic Highway Research Program 2 (SHRP2) Naturalistic Driving Study (NDS) contains extensive data on real-world driving and offers a reliable methodology to quantify and study near crashes. This article presents findings on near crashes and how they compare to crash events among teen, young adult, and experienced adult drivers.

Methods: A subset from the SHRP2 database consisting of 1,653 near crashes for teen (16–19 years, n = 550), young adult (20–24 years, n = 748), and experienced adult (35–54 years, n = 591) drivers was used. Onboard instrumentation including scene cameras, accelerometers, and Global Positioning System logged time series data at 10 Hz. Scene videos were reviewed for all events to classify near crashes based on 7 types: rear-end, road departure, intersection, head-on, side-swipe, pedestrian/cyclist, and animal. Near crash rates, incident type, secondary tasks, and evasive maneuvers were compared across age groups and between crashes and near crashes. For rear-end near crashes, vehicle dynamic variables including near crash severity, headway distance, time headway, and time to collision at the time of braking were compared across age groups. Crashes and near crashes were combined to compare the frequency of critical events across age.

Results: Teen drivers exhibited a significantly higher (P <.01) near crash rate than young adult and experienced adult drivers. The near crash rates were 81.6, 56.6, and 37.3 near crashes per million miles for teens, young adults, and experienced adults, respectively. Teens were also involved in significantly more rear-end (P <.01), road departure (P <.01), side-swipe (P <.01), and animal (P <.05) near crashes compared to young and experienced adults. Teens exhibited a significantly greater (P <.01) critical event rate of 102.2 critical events per million miles compared to 72.4 and 40.0 critical events per million miles for young adults and experienced adults, respectively; the critical event rate ratio was 2.6 and 1.8 for teens and young adults, respectively.

Conclusions: To our knowledge, this is the first study to examine near crashes among teen, young adult, and experienced adult drivers using SHRP2 naturalistic data. Near crash and critical event rates significantly decreased with increasing age and driver experience. Overall, teens were more than twice as likely to be involved in critical events compared to experienced adults. These data can be used to develop more targeted driver training programs and help manufacturers design active safety systems based on the most common driving errors for vulnerable road users.

Acknowledgments

The authors thank Danielle Mendoza for assistance with reviewing SHRP2 videos and data analysis. The authors acknowledge Aimee J. Palumbo, PhD, from the Center for Injury Research and Prevention and Rachel Rogers from the Biostatics and Data Management Core at the Children's Hospital of Philadelphia for their help with the statistical analysis.

Additional information

Funding

The authors acknowledge the National Science Foundation (NSF) Center for Child Injury Prevention Studies IU/CRC at the Children's Hospital of Philadelphia (CHOP) and the Ohio State University (OSU) for sponsoring this study and its Industry Advisory Board (IAB) members for their support, valuable input, and advice. This material is also based upon work supported by the National Science Foundation under Grant Number EEC-1460927. The views presented here are solely those of the authors and not necessarily the views of CHOP, CIRP, OSU, the NSF, or the IAB members.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.