439
Views
9
CrossRef citations to date
0
Altmetric
Short Communications

A preliminary study of human model head and neck response to frontal loading in nontraditional occupant seating configurations

, &
 

ABSTRACT

Objective: Computational human body models (HBMs) are nominally omnidirectional surrogates given their structural basis in human anatomy. As a result, such models are well suited for studies related to occupant safety in anticipated highly automated vehicles (HAVs). We utilize a well-validated HBM to study the head and neck kinematics in simulations of nontraditional occupant seating configurations.

Methods: The GHBMC M50-O v. 4.4 HBM was gravity settled into a generic seat buck and situated in a seated posture. The model was simulated in angular increments of 15 degrees clockwise from forward facing to rear facing. A pulse of 17.0 kph (NASS median) was used in each to simulate a frontal impact for each of the 13 seating configurations. Belt anchor points were rotated with the seat; the airbag was appropriately powered based on delta-V, and was not used in rear-facing orientations. Neck forces and moments were calculated.

Results: The 30-degree oblique case was found to result in the maximum neck load and sagittal moment, and thus Neck Injury Criteria (NIJ). Neck loads were minimized in the rear facing condition. The moments and loads, however, were greatest in the lateral seating configuration for these frontal crash simulations.

Conclusions: In a recent policy statement on HAVs, the NHTSA indicated that vehicle manufacturers will be expected to provide countermeasures that will fully protect occupants given any planned seating or interior configurations. Furthermore, the agency indicated that virtual tests using human models could be used to demonstrate such efficacy. While the results presented are only appropriate for comparison within this study, they do indicate that human models provide reasonable biomechanical data for nontraditional occupant seating arrangements.

Acknowledgments

This study was supported by Wake Forest University School of Medicine, the Global Human Body Models Consortium, LLC, under GHBMC project number WFU-005. All simulations were run on the DEAC cluster at Wake Forest University. F. Scott Gayzik is a member of Elemance, LLC, which distributes academic and commercial licenses for the use of GHBMC-owned computational human body models.

Additional information

Funding

Wake Forest University School of Medicine, the Global Human Body Models Consortium, LLC [WFU-005].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.