2,269
Views
8
CrossRef citations to date
0
Altmetric
Articles

Forward collision warning based on a driver model to increase drivers’ acceptance

& ORCID Icon
Pages S21-S26 | Received 08 Nov 2018, Accepted 21 May 2019, Published online: 05 Aug 2019
 

Abstract

Objective: Systems that can warn the driver of a possible collision with a vulnerable road user (VRU) have significant safety benefits. However, incorrect warning times can have adverse effects on the driver. If the warning is too late, drivers might not be able to react; if the warning is too early, drivers can become annoyed and might turn off the system. Currently, there are no methods to determine the right timing for a warning to achieve high effectiveness and acceptance by the driver. This study aims to validate a driver model as the basis for selecting appropriate warning times. The timing of the forward collision warnings (FCWs) selected for the current study was based on the comfort boundary (CB) model developed during a previous project, which describes the moment a driver would brake. Drivers’ acceptance toward these warnings was analyzed. The present study was conducted as part of the European research project PROSPECT (“Proactive Safety for Pedestrians and Cyclists”).

Methods: Two warnings were selected: One inside the CB and one outside the CB. The scenario tested was a cyclist crossing scenario with time to arrival (TTA) of 4 s (it takes the cyclist 4 s to reach the intersection). The timing of the warning inside the CB was at a time to collision (TTC) of 2.6 s (asymptotic value of the model at TTA = 4 s) and the warning outside the CB was at TTC = 1.7 s (below the lower 95% value at TTA = 4 s). Thirty-one participants took part in the test track study (between-subjects design where warning time was the independent variable). Participants were informed that they could brake any moment after the warning was issued. After the experiment, participants completed an acceptance survey.

Results: Participants reacted faster to the warning outside the CB compared to the warning inside the CB. This confirms that the CB model represents the criticality felt by the driver. Participants also rated the warning inside the CB as more disturbing, and they had a higher acceptance of the system with the warning outside the CB. The above results confirm the possibility of developing wellsaccepted warnings based on driver models.

Conclusions: Similar to other studies’ results, drivers prefer warning times that compare with their driving behavior. It is important to consider that the study tested only one scenario. In addition, in this study, participants were aware of the appearance of the cyclist and the warning. A further investigation should be conducted to determine the acceptance of distracted drivers.

Acknowledgment

The authors thank the partners of PROSPECT who contributed to the work described in this article: Applus IDIADA, BASt, Audi, BMW, Bosch, Continental, Volvo, TNO, VTI, University of Nottingham, University of Budapest, University of Amsterdam, IFSTTAR, 4activeSystems, TME, Daimler, and Chalmers.

Additional information

Funding

PROSPECT is a collaborative research project funded by the European Commission under Grant Agreement No. 634149.