129
Views
1
CrossRef citations to date
0
Altmetric
Short Communications from the AAAM 65th Annual Scientific Conference

Subcutaneous adipose tissue thickness around the ASIS area for human body models in reclined positions

ORCID Icon, , , ORCID Icon, , & show all
 

Abstract

Objective

Subcutaneous adipose tissue (SAT) thickness above the anterior superior iliac spine (ASIS) influences belt fit of a vehicle occupant. To improve finite element (FE) human body models and their application assessing future seating positions in cars, there is a need for more detailed data.

Methods

Anthropometric input data were used to statistically model a lower limit of the SAT thickness in the area around the ASIS (at the ASIS or in the groin) extracted from 102 postmortem computed tomography (pmCT) data sets (56 males and 46 females). Additionally, 2 pmCT scans of 1 male individual in both supine and sitting conditions were used to estimate change in SAT thickness by position.

Results

Distributions and locations of minimum values for SAT thickness were derived for males and females. Sex, age, and body mass index (BMI) remained in a linear regression model for the minimum SAT thickness in the ASIS area. Thirty-seven percent of the variance in the SAT distribution of the sample can be explained by these input variables. The individual with data in supine and sitting positions showed an SAT thickness value above the ASIS 6 times higher in the sitting position than in the supine position.

Conclusions

Individual factors influence SAT thickness around the ASIS in addition to BMI, sex, and age. The presented values need to be regarded as a lower limit of SAT thickness, because in 63% the minimum was found in the groin area and the measurements were performed in a supine position. The increase in SAT thickness in a sitting position compared to supine seen in the case example shows the need for further data acquisition to establish a transfer function interpolating between both positions. The SAT thickness minimum values in the ASIS area shown in this study can provide valuable input for soft tissue modeling in human body models with the aim to analyze seat belt fit and to computationally assess lap belt and occupant interaction sensitivity to SAT tissue thickness under load. This might be crucial in reclined sitting positions in automated driving.

Additional information

Funding

Supine pmCT data processing and use for statistical modeling was funded by the EU Horizon 2020 Programme for Research and Innovation under Grant Agreement No. 768947 “OSCCAR.” This document reflects only the authors’ views. The Innovation and Networks Executive Agency (INEA) is not responsible for any use that may be made of the information it contains.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.