239
Views
1
CrossRef citations to date
0
Altmetric
Articles

Loading rate effect on tradeoff of fractures from pelvis to lumbar spine under axial impact loading

, , , , , & show all
Pages S26-S31 | Received 03 Mar 2022, Accepted 03 Aug 2022, Published online: 12 Sep 2022
 

Abstract

Objectives: The transmission of impact loading from the seat-to-pelvis-to-lumbar spine in a seated occupant in automotive and military events is a mechanism for fractures to these body regions. While postmortem human subject (PMHS) studies have replicated fractures to the pelvis or lumbar spine using isolated/component models, the role of the time factor that manifests as a loading rate issue on injuries has not been fully investigated in literature. The objective of this study was to explore the hypothesis that short duration pulses fracture the pelvis while longer pulses fracture the spine, and intermediate pulses involve both components.

Methods: Unembalmed PMHS thoracolumbar spine-pelvis specimens were fixed at the superior end, and a six-axis load cell was attached. The specimens were mounted on a vertical accelerator, and noninjury and injury tests were conducted by applying short, medium, or long pulses with 5, 15, or 35 ms durations, respectively. Peak axial, shear and resultant forces were obtained. Injuries were documented using posttest x-ray and computed tomography images and scaled using the AIS (Citation2015).

Results: The mean age, stature, weight, body mass index, and BMD of twelve specimens were 64.8 ± 11.4 years, 1.8 ± 0.01 m, 83 ± 13 kg, 26.7 ± 5.0 kg/m2, and 114.5 ± 21.3 mg/cc, respectively. For the short, long, and medium duration pulses, the mean resultant forces were 5.6 ± 0.9 kN, 5.9 ± 0.94 kN, and 5.4 ± 1.8 kN, and time durations were 4.8 ± 0.5 ms, 16.3 ± 7.3 ms, and 34.5 ± 7.5 ms, respectively. For the short pulse, pelvis injuries were more severe in 3 out 4 specimens, for the medium pulse, they were distributed between the pelvis and spine, and for the long pulse, spine injuries were more severe in 3 out of 4 specimens.

Conclusions: While acknowledging the limitations of the sample size, the results of this study support the hypothesis of the time variable in the tradeoff between pelvis and spine injuries with pulse duration. The tradeoff pattern is attributed to mass recruitment: short pulse biases injuries to pelvis while limiting spinal injuries, and the opposite is true for the longer pulse, thus supporting the hypothesis. It is important to account for the time variable in injury analysis.

Acknowledgments

The study was also the result of work supported with resources and use of facilities at the Zablocki VA Medical Center, Milwaukee, Wisconsin, the Department of Neurosurgery at the Medical College of Wisconsin, and the Office of the Assistant Secretary of Defense for Health Affairs, through a Broad Agency Announcement Award No. W81XWH-16-1-0010. The present study focused on the trade-off injuries and pulses. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the Department of Defense.

Additional information

Funding

The study was supported in part by the US Department of Defense through AFC DEVCOM Analysis Center. Department of Defense, USA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.