222
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Conducting polyaniline-rutile TiO2 nanocomposites for the development of high-k dielectric materials

, , , &
Pages 238-243 | Received 24 Feb 2016, Accepted 16 May 2016, Published online: 19 Jul 2016
 

ABSTRACT

Inorganic dielectrics encapsulated in an organic matrix are showing excellent promise as novel dielectric materials. In this work, firstly highly organized crystalline nanoparticles of rutile TiO2 were synthesized by acid hydrolysis of titanium isopropoxide at room temperature. Then we developed a novel dielectric material consisting of highly organized rutile TiO2/polyaniline (PAni) nanocomposites by in-situ chemical oxidative polymerization. The structural, morphological, conducting, and dielectric properties of the rutile TiO2/PAni nanoparticles have been evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution-transmission emission microscopy (HR-TEM), four-point probe technique, CV (Capacitance versus Voltage), and Impedance analyzer. The nanocomposites show 70 times higher permittivity compared to rutile nanoparticles and much higher compared to anatase/PAni (ES) nanocomposites at 10 MHz. Large interfacial polarizations, nanostructure, and dopant levels are the key factors for the large dielectric constant of the nanocomposites. The rutile/PAni (ES) nanocomposites might see potential uses in super-capacitors, gate dielectric in transistors, and capacitive-type gas sensors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.