225
Views
2
CrossRef citations to date
0
Altmetric
Articles

Effect of annealing on microstructure and mechanical properties of polypropylene random copolymer

, , , &
Pages 1-13 | Received 22 Jul 2018, Accepted 22 Sep 2018, Published online: 05 Oct 2018
 

ABSTRACT

In this work, polypropylene random copolymer (PPR) was taken as an example to study the changes of mechanical properties related to its microstructure evolution. Firstly, the toughness and fracture morphology were analyzed by notched Izod impact test and scanning electron microscope. Annealing at relative lower temperatures (<100°C), mechanical properties are slightly enhanced, which should be pointed out that significant improvements have been observed when annealing at relative higher temperatures (>100°C). Secondly, the study was conducted from the conventional differential scanning calorimetry, wide angle X-ray diffraction, and small-angle X-ray scattering to analyses the changes in the crystalline and amorphous regions. Dynamic thermomechanical analysis was employed to explore the changes of molecular mobility in samples after annealing at different temperatures. Moreover, to find out the stress transfer between the crystalline regions and the amorphous regions, we did further analysis of the typical stress–strain curves and proposed the mechanism of microstructure evolution during annealing process. The results shown that amorphous rearranged and formed thinner lamellae when annealing at relative low temperature. While annealing at higher temperatures, the mobile and rigid amorphous regions rearranged into more perfect lamellae and the density of stress transmitters was increased significantly.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.