244
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The ensemble of immobilized superparamagnetic nanoparticles: the role of the spatial distribution in the sample

ORCID Icon, & ORCID Icon
Pages S1-S9 | Received 10 Jun 2021, Accepted 15 Jul 2021, Published online: 08 Aug 2021
 
1

ABSTRACT

In this work, static, thermodynamic and magnetic properties of interacting superparamagnetic nanoparticles have been studied using theory and computer simulation. Two types of particles’ distributions in the sample have been considered: (a) at the nodes of the simple cubic lattice and (b) by the random way. It was assumed that the directions of the easy axes for all particles were parallel to each other and directed at an angle to the external magnetic field. The theoretical approach is based on the expanding of the Helmholtz free energy into the classical virial series up to the second virial coefficient. The analytical expressions of the Helmholtz free energy for both textures allow us to obtain theoretical predictions for the static magnetization and the isochoric heat capacity. These characteristics turned out in a good agreement with the Monte-Carlo simulation data in the broad range of considered system parameters. In a zero and moderate external magnetic fields, the new theory allows to describe the numerical calculations much more efficient than the ideal approximations, for which the interparticle dipole-dipole interactions were neglected.

Disclosure Statement

The authors declare that there is no conflict of interest regarding the publication of this research article.

Additional information

Funding

This work was supported by the Russian Foundation for Basic Research under Grant number [20-02-00358].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.