263
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Antioxidant molecule useful in the stabilization of nanoparticles in water suspension

, , , , , , , & show all
Pages S76-S90 | Received 29 Dec 2021, Accepted 10 Jan 2022, Published online: 22 Jan 2022
 
1

ABSTRACT

The preparation of antioxidant-coated magnetic nanoparticles (MNPs) has been studied to improve their biocompatibility, i.e. reducing negative side effects. The theoretical study was focused on the interaction of gallic acid (GA) with ionic iron at the surface of nanoparticles that increased reactivity and favors the uniform dispersion in water of magnetic nanoparticles and the interaction with other molecules of biomedical interest. Experimentally, we worked with an optimal method of coating the MNP with GA at 80°C which led to fine granulation highlighted by TEM, preservation of good crystallinity, proven by XRD as well as magnetic properties suitable for biomedical applications based on magnetically targeted guidance. The study of nanotoxicity was focused on the fate of MNPs eliminated in the biosphere, so the influence on photosynthesis in seedlings in early ontogenetic stages was sought. The small variation, with a positive trend, of the efficiency of photosynthesis was correlated with the balancing of the toxic effects, of ROS generation catalyzed by iron ions from the MNP surface by means of the antioxidant character of GA.

Acknowledgments

This research was partially supported by 2021 JINR-RO Dubna projects.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.