689
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Vibration Control of a Cylindrical Shell Structure Using Macro Fiber Composite Actuators

, &
Pages 491-506 | Received 18 Nov 2010, Accepted 17 Mar 2011, Published online: 06 Sep 2011
 

Abstract

We studied the vibration suppression of an end-capped cylindrical shell structure with surface bonded macro fiber composite actuators. The dynamic characteristics of the cylindrical shell structure were first analyzed, and then a negative velocity feedback algorithm was applied to suppress the structural vibration at resonance and nonresonance vibration frequencies. The modal mass and stiffness matrix of the smart cylindrical shell structure were extracted for the controller design. An active controller was designed to suppress vibration of the smart structure, and the control performance was evaluated in resonance and nonresonance regimes. It was found that structural vibration was reduced by adopting a proper negative velocity feedback control algorithm in both resonance and nonresonance regimes.

ACKNOWLEDGMENT

This work was supported by the Dongguk University Research Fund of 2010.

Notes

#Communicated by S. Sinha.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.