289
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Thermoelastic instability of functionally graded materials with interaction of frictional heat and contact resistance

, , , &
Pages 139-156 | Received 08 Nov 2016, Accepted 11 Apr 2017, Published online: 31 May 2017
 

ABSTRACT

Both of the frictional heat and thermal contact resistance have a grave responsibility for the localized high temperature (hot spots) at the contact region, which is known as one of the most dangerous appearances in the brakes systems. In this paper, we study the thermoelastic instability (TEI) of a functionally graded material (FGM) half-plane sliding against a homogeneous half-plane at the in-plane direction. The interaction of the frictional heat and thermal contact resistance is taken into account in the TEI analysis. The material properties of the FGM half-plane are supposed to follow the exponential function along the thickness direction. The coupled TEI problem of FGMs is solved by using the perturbation method. The frictionally excited TEI of FGMs is also considered by neglecting the effect of the thermal contact resistance. The results show that the thermal contact resistance, sliding speed and gradient index have significant influence on the TEI. It is found that the variation of the gradient index of FGMs can increase the critical sliding speed and critical heat flux, and therefore improve the TEI of the sliding system.

Acknowledgments

The work described in this paper is supported by National Natural Science Foundation of China under Grant numbers 11272040 and 11322218, and Fundamental Research Funds for the Central Universities under Grant number 2016YJS106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.