478
Views
12
CrossRef citations to date
0
Altmetric
Articles

Study of geometric effects on nonpneumatic tire spoke structures using finite element method

&
Pages 2379-2399 | Received 12 Nov 2019, Accepted 01 Jun 2020, Published online: 23 Jun 2020
 

Abstract

This research aims to develop a finite element model of nonpneumatic tires (NPTs) with different spoke shapes to study the geometric effects on the NPT for the maximum stiffness and minimum local stress. Four types of spoke structure were classified from reviewed articles and intellectual property. These were based on a few criteria including (1) manufacturability using polyurethane or engineering polymer as the material and (2) simplicity of the shape, the shape with less complexity and simple patterns. The finite element models of NPTs with different four spoke types were created using the same tread, shear band and the overall dimension. The spoke component of each model was created using 2D elements, with the different thickness to give the same mass. The hyperelastic constitutive equations were used to model behavior of NPT tread and spokes. The finite element analysis of vertical stiffness testing was performed on the NPT models using the maximum load required for skid-steer loaders. The analysis results were then compared to give an overview of load capacity of each model along with each advantage/disadvantage. The model with highest vertical stiffness by weight ratio was selected for the optimum number of spoke. Parabolic trends in vertical stiffness and maximum local stress at different spoke numbers were observed. This study found that the upper design limitation of spoke number was 24 spokes. Thus, the optimized number of spokes can be observed and the finite element model can be used to define the optimum geometry for a novel NPT.

Additional information

Funding

This work was financial supported by Rubber Technology Research Center (RTEC), Mahidol University and the Thailand Research Fund (TRF) under the TRF Research Grant No. RDG60T0140.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.