223
Views
2
CrossRef citations to date
0
Altmetric
Articles

A comparative investigation on theoretical models for forming limit diagram prediction of automotive sheet metals

ORCID Icon, , & ORCID Icon
Pages 3890-3904 | Received 03 Jan 2021, Accepted 16 Jun 2021, Published online: 07 Jul 2021
 

Abstract

Determination of sheet metal formability, which is commonly evaluated through a forming limit curve (FLC), is an essential task for part designs in the automotive engineering community. This study provides a coherent comparison among four theoretical FLC criteria including Swift’s instability, Hill’s localized neck, Storen–Rice bifurcation analysis, and Hora’s MMFC. Within these criteria, closed-form solutions for FLC are available for fast and expensiveness explicitly estimating the forming limit diagram (FLD) of sheet metals. According to their closed-form solutions, an empirical suggestion is proposed to improve the accuracy of the theoretical FLC. Quantitative comparisons are then made to evaluate the performance of these criteria for numerous aluminum alloys and steel sheets which are frequently used in automotive industries. Based on the comparisons, the advantages and limitations of each model are discussed from a physical point of view, which appears to be a useful suggestion for selecting a proper theoretical model to evaluate the FLD of sheet metals without conducting experimental tests.

Acknowledgment

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 107.02-2019.300.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.