167
Views
2
CrossRef citations to date
0
Altmetric
Articles

Nonlinear vibration, stability, and bifurcation analysis of axially moving and spinning cylindrical shells

ORCID Icon, ORCID Icon & ORCID Icon
Pages 4032-4062 | Received 15 Apr 2021, Accepted 25 Jun 2021, Published online: 19 Jul 2021
 

Abstract

The nonlinear vibration characteristics of the rotating axially moving circular cylindrical shells in subharmonic regions are investigated in the present paper. The motion equations are carried out based on the Hamilton principle in cylindrical coordinates utilizing Donnell’s nonlinear shell theory. By introducing the suitable airy stress function, three equilibrium equations in the cylindrical coordinates are simplified into two nonlinear coupled nonhomogeneous PDEs, including a compatibility equation and the transverse motion equation. The compatibility equation solution is obtained employing the seven degrees of freedom for the flexural mode shape of the system. By implementation of the Galerkin method, the motion equation would be projected into seven nonlinear coupled nonhomogeneous ODEs. This set of equations is solved using a direct normal form method validated by the numerical method and available data. The effect of angular velocity and axial speed is investigated employing frequency and force response curves, bifurcation diagrams, time history, and the system’s phase portraits. Always axially moving and rotation speed of the system intensifies the nonlinear behavior of the frequency responses.

Conflict of interest/competing interests

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.