61
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Metastability of Multi-Lamellar Vesicles in a Nonionic System

, , , &
Pages 166-181 | Published online: 18 Mar 2009
 

Abstract

Nuclear magnetic resonance spectroscopy and rheological analysis have been used to investigate the stability of mechanically induced tri-ethylene-glycol-mono-n-decyl-ether (C10E3)/deuterium oxide (D2O) multi-lamellar vesicles (MLVs) and the transition from MLVs to planar lamellae. It was found that MLVs prepared by vortex stirring, relax back to the lamellar phase in a few hours while the relaxation of the shear induced MLVs takes days. Pulsed gradient spin echo and water self-diffusion coefficient experiments, revealed that the MLVs texture, obtained by vortex stirring, is composed of large size structures. These data indicate that the kinetics of lamellar re-formation depend on the MLVs number density.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.