110
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

The Evaluation of Ca Doped GDC Electrolyte Thin Film for Solid Oxide Fuel Cells by Electron Beam Deposition

, , &
Pages 145-153 | Published online: 27 Sep 2012
 

Abstract

Electron beam deposition technique was used for formation of gadolinium Ca doped GDC electrolyte thin films. Ca_GDC electrolyte thin films were grown by evaporating Gd0.1Ce0.9O1.95 ceramic powder. The evaporating Ca_GDC electrolyte powder was synthesized by solid-state reaction method. The GDC thin films were deposited on porous Ni-GDC anode pellet. Operating technical parameters that influence thin film microstructure and crystallite size were studied. It was found that electron gun power (changed in the range of 0.60 to 1.05 kW) has the influence on the crystallite size of GDC thin films and decreased linearly increasing electron beam gun power. The influence of electron gun power and annealing temperature on thin film structure and surface morphology were investigated by X-ray diffraction (XRD) using CuKα-radiation in the range of 2θ = 20∼80°C. The XRD peaks was showed formation of single-phase monoclinic structure was confirmed by X-ray diffraction (XRD) for the doped Ca GDC electrolyte. The patterns indicated the intensity of well-cubic fluorite structure phase.The morphology and the size of the prepared particles were investigated with a field-emission scanning electron microscope (FE-SEM). The performance of the cells was evaluated over 500∼800°C using humidified hydrogen as fuel and air as oxidant.

Acknowledgment

This study was supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 20104010100510).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.