104
Views
2
CrossRef citations to date
0
Altmetric
Articles

Experimental investigations on direct injection diesel engines using grape seed oil methyl ester with different bowl geometries

, &
Pages 590-597 | Received 12 Oct 2016, Accepted 26 Mar 2019, Published online: 14 Apr 2019
 

ABSTRACT

In this paper, the performance of direct injection diesel engine was experimentally investigated under the influence of two different pistons’s geometry deep bowl combustion chamber (DBCC) and toroidal combustion chamber (TCC) compared with standard piston combustion chamber (SPCC) geometry. The experiments were carried out standard atmospheric conditions of 1.01325 bar and 30 ± 2 °C. The piston bowl was designed and developed without modifying the compression ratio of the engine. The investigations were carried out with B25 (25% GOME + 75% diesel), B50 (50% GOME + 50% diesel), B75 (75% GOME +25% diesel) and B100 (100% GOME) by volume blends for three different bowl geometries. The thermogravimetric analysis (TGA) was given the importance of higher in-cylinder temperature for the mass change of GOME leads to a more premixed phase of combustion. The results showed that DBCC has better combustion characteristics when compared with SPCC and TCC for all the blends. The B25 and B50 blends showed good combustion characteristics with DBCC and SPCC individually. While TCC showed average engine characteristics for all the blends categorically, the brake thermal efficiency for B25 blend confirmed a 4.7% higher than SPCC-diesel with DBCC piston, and the smoke, CO (Carbon monoxide), and HC (Hydrocarbon) are reduced by 9.2%, 30.7%, and 4.6%, respectively. Thus, the B25 blend in a DBCC piston engine was observed to be the distinction than other configurations. The results confirmed that the DBCC is a good option for B25 blend.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.