167
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical simulation of DPF thermal regeneration process based on an improved dynamic model

, , , &
Pages 723-729 | Received 26 Apr 2020, Accepted 01 Jul 2020, Published online: 20 Jul 2020
 

ABSTRACT

In this paper, an improved kinetics model of soot oxidation based on the traditional B-K model is employed to characterize the thermal regeneration process of diesel particulate filters (DPF). Considering the influence of specific surface area and inhibition factor on soot oxidation, the regeneration process is simulated and analyzed using the commercial FLUENT software combined with UDF method. The results show that soot particles react from the middle of the filter to both ends, and the temporal profile of soot mass in the thermal regeneration process could be divided into three sections: smooth reaction, rapid reaction, and late reaction. The regeneration time decreases with the increasing of the incoming oxygen volume fraction. When the thickness of the deposited soot layer is less than 0.1 mm, the regeneration time is prolonged as the thickness of the deposited layer decreases. When the thickness is more than 0.1 mm, the regeneration time shows the opposite trend with the thickness of the deposited layer. Meanwhile, the curve of maximum wall temperature changing with time is divided into heating, rapid-burning, and slow-burning regimes. The maximum wall temperature increases as the volume fraction of oxygen flow increases, and as the deposited layer thickness increases.

Additional information

Funding

This work was supported by the Research innovation project for doctoral students in Jiangsu province, China. (CXLX13_0657)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.