162
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Effect of channel dimension on biodiesel yield in millireactors produced by stereolithography

ORCID Icon & ORCID Icon
Pages 156-165 | Received 28 Feb 2020, Accepted 29 Sep 2020, Published online: 12 Oct 2020
 

ABSTRACT

Industrial research departments and chemical engineering institutes have begun to adopt additive manufacturing technologies, such as stereolithography for producing special types of reactors for continuous production. Microreactors have been widely used to improve the mass and heat transfer processes between immiscible liquid-liquid phases, but with the disadvantage of requiring sophisticated technology for their manufacture. In this paper, an approach for producing millireactors by stereolithography and rapid optimization of millireactor design with circular cross-section is presented.

Transesterification of vegetable oils with alcohols is widely used method for biodiesel synthesis, generally taking place in a batch reactor. Microreactors due to their short residence times and high biodiesel yields are currently being explored for continuous production, but have disadvantages in low production volumes and high pressure drops. To overcome above-mentioned problems, millireactors with channel diameters from 1.5 mm to 3.5 mm were produced in order to investigate the impact of channel dimensions on conversion of sunflower oil to fatty acid methyl esters (FAME). Transesterification reaction of sunflower oil using methanol with addition of KOH base catalyst to FAME was monitored by Fourier-transform infrared spectroscopy, gas chromatography, and nuclear magnetic resonance.

Results show that millireactors with smaller channel dimensions and processes with higher temperatures at certain residence times can be used to achieve better biodiesel yield in much shorter time than batch reactors. In addition, continuous way of FAME production in millireactors is presented. Production in millireactors provided an improvement when compared to microreactors because they have low pressure drops and higher production volumes.

Additional information

Funding

This work has been supported in part by Croatian Science Foundation under the project entitled “Development of Materials for 3D Printing of Microreactors” [UIP-2014-09-3154].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.