206
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect and simplification of off-design efficiency on optimization of planning and operation for distributed energy systems

, , , &
Pages 109-124 | Received 29 Nov 2020, Accepted 09 May 2021, Published online: 05 Jul 2021
 

ABSTRACT

The optimization of planning and operation for distributed energy systems (DESs) is often converted into an approximated mixed-integer linear programming (MILP) problem. To improve the MILP model’s accuracy, it is necessary to linearize many non-linear factors, and one of the most critical factors is off-design efficiency. In this study, the off-design performance of common energy conversion technologies and their effect on optimization reliability are investigated through a literature review and dynamic simulation models. It is found that most technologies can maintain high and stable efficiency within a certain range of load, and the off-design characteristics of certain technologies can be ignored. Therefore, in our MILP model, the off-design efficiency is simplified by optimizing the number of certain types of devices while simultaneously limiting their load to a certain range and ignoring the off-design characteristics of other types of devices. This method allows the devices to always work with high efficiency, due to perfect working conditions. The optimization results prove that compared to the method considering the off-design efficiency of all technologies, the maximum deviation is only 2.29%, demonstrating enough accuracy of the proposed method. Owing to the simplification of off-design efficiency, more non-linear factors are promising to add in the model.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51906173) and Postdoctoral Research Foundation of China (2019TQ0227).

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [51906173]; Postdoctoral Research Foundation of China [2019TQ0227].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.