18,670
Views
130
CrossRef citations to date
0
Altmetric
Original Articles

Inactivation of Viruses on Surfaces by Ultraviolet Germicidal Irradiation

&
Pages 400-405 | Published online: 07 Nov 2007
 

Abstract

In many outbreaks caused by viruses, the transmission of the agents can occur through contaminated environmental surfaces. Because of the increasing incidence of viral infections, there is a need to evaluate novel engineering control methods for inactivation of viruses on surfaces. Ultraviolet germicidal irradiation (UVGI) is considered a promising method to inactivate viruses. This study evaluated UVGI effectiveness for viruses on the surface of gelatin-based medium in a UV exposure chamber. The effects of UV dose, viral nucleic acid type (single-stranded RNA, ssRNA; single-stranded DNA, ssDNA; double-stranded RNA, dsRNA; and double-stranded DNA, dsDNA), and relative humidity on the virus survival fraction were investigated. For 90% viral reduction, the UV dose was 1.32 to 3.20 mJ/cm2 for ssRNA, 2.50 to to 4.47 mJ/cm2 for ssDNA, 3.80 to 5.36 mJ/cm2 for dsRNA, and 7.70 to 8.13 mJ/cm2 for dsDNA. For all four tested viruses, the UV dose for 99% viral reduction was 2 times higher than those for 90% viral reduction. Viruses on a surface with single-stranded nucleic acid (ssRNA and ssDNA) were more susceptible to UV inactivation than viruses with double-stranded nucleic acid (dsRNA and dsDNA). For the same viral reduction, the UV dose at 85% relative humidity (RH) was higher than that at 55% RH. In summary, results showed that UVGI was an effective method for inactivation of viruses on surfaces.

ACKNOWLEDGMENTS

This work was supported by a grant from the National Science Council, Republic of China. Chun-Chieh Tseng was supported by a graduate scholarship from the same grant during part of this research effort.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.