412
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of Workplace Protection Factors for Different Biological Contaminants

, , , , , , , , & show all
Pages 417-425 | Published online: 11 Jun 2011
 

Abstract

This study compared workplace protection factors (WPFs) for five different contaminants (endotoxin, fungal spores, (1→3)-β-D-glucan, total particle mass, and total particle number) provided by an N95 elastomeric respirator (ER) and an N95 filtering facepiece respirator (FFR). We previously reported size-selective WPFs for total particle numbers for the ER and FFR, whereas the current article is focused on WPFs for bioaerosols and total particle mass. Farm workers (n = 25) wore the ER and FFR while performing activities at eight locations representing horse farms, pig barns, and grain handling facilities. For the determination of WPFs, particles were collected on filters simultaneously inside and outside the respirator during the first and last 15 min of a 60-min experiment. One field blank per subject was collected without actual sampling. A reporting limit (RL) was established for each contaminant based on geometric means (GMs) of the field blanks as the lowest possible measurable values. Depending on the contaminant type, 38–48% of data points were below the RL. Therefore, a censored regression model was used to estimate WPFs (WPFcensored). The WPFcensored provided by the two types of respirators were not significantly different. In contrast, significant differences were found in the WPFcensored for different types of contaminants. GMs WPFscensored for the two types of respirators combined were 154, 29, 18, 19, and 176 for endotoxin, fungal spore count, (1→3)-β-D-glucan, total particle mass, and total particle number, respectively. The WPFcensored was more strongly associated with concentrations measured outside the respirator for endotoxin, fungal spores, and total particle mass except for total particle number. However, when only data points with outside concentrations higher than 176×RL were included, the WPFs increased, and the association between the outside concentrations and the WPFs became weaker. Results indicate that difference in WPFs observed between different contaminants may be attributed to differences in the sensitivity of analytical methods to detect low inside concentrations, rather than the nature of particles (biological or non-biological).

ACKNOWLEDGMENTS

The authors would like to thank the farm owners and workers who volunteered to participate in the study. This research was supported by the National Institute for Occupational Safety and Health (NIOSH R01 OH004085).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.