1,090
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

A Radiometry Protocol for UVGI Fixtures Using a Moving-Mirror Type Gonioradiometer

, , , , , & show all
Pages 140-148 | Published online: 14 Feb 2012
 

Abstract

Ultraviolet germicidal irradiation (UVGI), 254 nm UV-C, is increasingly used as an infection control strategy to reduce the spread of airborne pathogens such as tuberculosis (TB), influenza viruses, and measles. With the appearance of multidrug-resistant TB and emerging infectious disease such as severe acute respiratory syndrome (SARS) and H1N1 influenza viruses, engineering controls using 254 nm UV-C lamps within specialized luminaires, herein designated UVGI fixtures, are being installed in high-risk settings such as homeless shelters, hospitals, jails and prisons, and schools. Studies have established that a relatively uniform spatial distribution of UV-C in the upper room can effectively cleanse the air of aerosolized pathogens. However, for planning purposes, the placement of multiple UVGI fixtures in a space, to achieve uniformity of UV-C energy distribution using currently available lighting software, is not yet practical because no industry-wide standard method exists for radiometric measurement of commercial UVGI fixtures. In this article, standard methods for photometry and reporting of general fluorescent lighting luminaire photometric data are adopted to provide UVGI fixture spatial emission distribution data in an electronic file format. The ultimate expectation of the authors is that the results will lead to a software program for fixture placement, comparable to and as easy to use as the corresponding software used for general interior lighting applications. To accomplish this goal, a radiometry measurement system is developed to obtain the radiant intensity distributions of UVGI fixtures in a three-dimensional space. This system includes a moving-mirror Type C goniometer, a mirror, a radiometer, a desktop computer, the mechanical control hardware, and the data acquisition/presentation software. Repeated measurements were made on each of three exemplary UVGI fixtures, and measurement variation did not exceed ± 2.0%.

ACKNOWLEDGMENTS

The authors thank the New York State Energy Research and Development Authority (NYSERDA) for sponsoring this work through agreement 9425. In addition, we thank Acuity Brands Lighting for the laboratory and personnel resources used in conducting the radiometric testing for this study.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.