294
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Analytical Method Validation for the Determination of 2,3,3,3-Tetrafluoropropene in Air Samples Using Gas Chromatography with Flame Ionization Detection

, , , , &
Pages 583-589 | Published online: 11 Oct 2013
 

Abstract

A new low global warming refrigerant, 2,3,3,3-tetrafluoro propene, or HFO-1234yf, has been successfully evaluated for automotive air conditioning, and is also being evaluated for stationary refrigeration and air conditioning systems. Due to the advantageous environmental properties of HFO-1234yf versus HFC-134a, coupled with its similar physical properties and system performance, HFO-1234yf is also being evaluated to replace HFC-134a in refrigeration applications where neat HFC-134a is currently used. This study reports on the development and validation of a sampling and analytical method for the determination of HFO-1234yf in air. Different collection media were screened for desorption and simulated sampling efficiency with three-section (350/350/350 mg) Anasorb CSC showing the best results. Therefore, air samples were collected using two 3-section Anasorb CSC sorbent tubes in series at 0.02 L/min for up to 8 hr for sample volumes of up to 9.6 L. The sorbent tubes were extracted in methylene chloride, and analyzed by gas chromatography with flame ionization detection. The method was validated from 0.1× to 20× the target level of 0.5 ppm (2.3 mg/m3) for a 9.6 L air volume. Desorption efficiencies for HFO-1234yf were 88 to 109% for all replicates over the validation range with a mean overall recovery of 93%. Simulated sampling efficiencies ranged from 87 to 104% with a mean of 94%. No migration or breakthrough to the back tube was observed under the sampling conditions evaluated. HFO-1234yf samples showed acceptable storage stability on Anasorb CSC sorbent up to a period of 30 days when stored under ambient, refrigerated, or frozen temperature conditions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.