907
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Performance Evaluation of Selected N95 Respirators and Surgical Masks When Challenged with Aerosolized Endospores and Inert Particles

, , , , , & show all
Pages 461-467 | Published online: 05 Aug 2013
 

Abstract

The objective of this study was to assess how the relative efficiency of N95 respirators and surgical masks might vary with different challenge aerosols, utilizing a standardized manikin head form as a surrogate to human participation. A Collision nebulizer aerosolized B. anthracis Sterne strain endospores and polystyrene latex (PSL) particles to evaluate 11 models of N95 respirators and surgical masks. An automated breathing simulator, calibrated to normal tidal volume and active breathing rate, mimicked human respiration. A manikin head form with N95 respirators or surgical masks, and manikin head form without N95 respirators or surgical masks were placed in the bioaerosol chamber. An AGI-30 sampler filled with phosphate buffered water was fitted behind the mouth of each manikin head form to collect endospore bioaerosol samples. PSL aerosols concentrations were quantified by an ARTI Hand Held Particle Counter.

Geometric Mean (GM) relative efficiency of N95 respirators and surgical masks challenged with endospore bioaerosol ranged from 34–65%. In PSL aerosol experiments, GM relative efficiency ranged from 35–64% for 1.3 μm particles. GM filtration efficiency of all N95 and surgical N95 respirators filter media evaluated was ≥99% when challenged with particles ≥0.1 μm. GM filtration efficiency of surgical mask filter media ranged from 70–83% with particles ≥0.1 μm and 74–92% with 1.3 μm PSL particles.

Relative efficiencies of N95 respirators and surgical masks challenged with aerosolized B. anthracis endospores and PSL were similar. Relative efficiency was similar between N95 respirators and surgical masks on a manikin head form despite clear differences in filtration efficiency. This study further highlights the importance of face seal leakage in the respiratory protection provided by N95 respirators, and demonstrates it on a human surrogate.

ACKNOWLEDGMENTS

This work was supported financially by the Department of Health and Human Services, Centers for Disease Control and Prevention (CDC). Work was completed at the University of Cincinnati College of Engineering.

The authors would like to thank Drs. James Deddens and Yan Jin from the Department of Mathematical Sciences at the University of Cincinnati for technical and statistical support.

DISCLAIMER

Mention of products or services and use of trade names and commercial sources is for identification only and does not constitute endorsement by the Centers for Disease Control or the University of Cincinnati. No author has either a conflict of interest involving or a financial interest in the work presented.

*Author is deceased.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.