579
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of Protective Ensemble Thermal Characteristics Through Sweating Hot Plate, Sweating Thermal Manikin, and Human Tests

, , , &
Pages 259-267 | Received 14 May 2013, Accepted 07 Oct 2013, Published online: 28 Feb 2014
 

Abstract

The purpose of this study was to evaluate the predictive capability of fabric Total Heat Loss (THL) values on thermal stress that Personal Protective Equipment (PPE) ensemble wearers may encounter while performing work. A series of three tests, consisting of the Sweating Hot Plate (SHP) test on two sample fabrics and the Sweating Thermal Manikin (STM) and human performance tests on two single-layer encapsulating ensembles (fabric/ensemble A = low THL and B = high THL), was conducted to compare THL values between SHP and STM methods along with human thermophysiological responses to wearing the ensembles. In human testing, ten male subjects performed a treadmill exercise at 4.8 km and 3% incline for 60 min in two environmental conditions (mild = 22°C, 50% relative humidity (RH) and hot/humid = 35°C, 65% RH). The thermal and evaporative resistances were significantly higher on a fabric level as measured in the SHP test than on the ensemble level as measured in the STM test. Consequently the THL values were also significantly different for both fabric types (SHP vs. STM: 191.3 vs. 81.5 W/m2 in fabric/ensemble A, and 909.3 vs. 149.9 W/m2 in fabric/ensemble B (p < 0.001). Body temperature and heart rate response between ensembles A and B were consistently different in both environmental conditions (p < 0.001), which is attributed to significantly higher sweat evaporation in ensemble B than in A (p < 0.05), despite a greater sweat production in ensemble A (p < 0.001) in both environmental conditions. Further, elevation of microclimate temperature (p < 0.001) and humidity (p < 0.01) was significantly greater in ensemble A than in B. It was concluded that: (1) SHP test determined THL values are significantly different from the actual THL potential of the PPE ensemble tested on STM, (2) physiological benefits from wearing a more breathable PPE ensemble may not be feasible with incremental THL values (SHP test) less than approximately 150–200 W·m2, and (3) the effects of thermal environments on a level of heat stress in PPE ensemble wearers are greater than ensemble thermal characteristics.

ACKNOWLEDGMENT

The authors are sincerely grateful for technical and experimental support from W.L. Gore & Associates Inc., Lion Apparel Inc., Underwriters Laboratories, and the Fabric Protection and Comfort Center at North Carolina State University. The subjects who generously volunteered their time to participate in this study are much appreciated.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.