491
Views
9
CrossRef citations to date
0
Altmetric
Departments

Identifying the Hazard Characteristics of Powder Byproducts Generated from Semiconductor Fabrication Processes

, &
 

Abstract

Semiconductor manufacturing processes generate powder particles as byproducts which potentially could affect workers’ health. The chemical composition, size, shape, and crystal structure of these powder particles were investigated by scanning electron microscopy equipped with an energy dispersive spectrometer, Fourier transform infrared spectrometry, and X-ray diffractometry. The powders generated in diffusion and chemical mechanical polishing processes were amorphous silica. The particles in the chemical vapor deposition (CVD) and etch processes were TiO2 and Al2O3, and Al2O3 particles, respectively. As for metallization, WO3, TiO2, and Al2O3 particles were generated from equipment used for tungsten and barrier metal (TiN) operations. In photolithography, the size and shape of the powder particles showed 1–10 μm and were of spherical shape. In addition, the powders generated from high-current and medium-current processes for ion implantation included arsenic (As), whereas the high-energy process did not include As. For all samples collected using a personal air sampler during preventive maintenance of process equipment, the mass concentrations of total airborne particles were < 1 μg, which is the detection limit of the microbalance. In addition, the mean mass concentrations of airborne PM10 (particles less than 10 μm in diameter) using direct-reading aerosol monitor by area sampling were between 0.00 and 0.02 μg/m3. Although the exposure concentration of airborne particles during preventive maintenance is extremely low, it is necessary to make continuous improvements to the process and work environment, because the influence of chronic low-level exposure cannot be excluded.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.