646
Views
8
CrossRef citations to date
0
Altmetric
Articles

Variability of aerosol mass and number concentrations during taconite mining operations

ORCID Icon, , ORCID Icon &
 

Abstract

This study characterized concentration metrics of airborne nanoparticles and their time series across major operations of a taconite mine through monitoring respirable and ultrafine particle concentrations at four major processing departments of the mine: crushing, dry milling, wet milling, and pelletizing (United Taconite Mine, Iron Junction, MN, USA). We used three area stations of direct-reading instruments to estimate concentration metrics including PM1 (particles with an aerodynamic diameter <1 µm), respirable dust (particles sampled according to the respirable convention with a 50% sampling efficiency at an aerodynamic diameter of 4 µm), PN (total number concentration of particles), and lung-deposited surface area concentrations (LDSA) of particles smaller than 300 nm, on two different days. Results for each station were compared using bivariate correlation analysis to obtain insight into the spatial distribution, and intra-class correlation coefficients (ICCs) to evaluate the between-day repeatability between the measurements. Comparability of the LDSA concentrations measured by two different devices was also investigated using linear regression. Results revealed that the pelletizing operation produced the highest average LDSA concentration on both days (with a maximum concentration of 199 ± 48 µm2/cm3 in pelletizing, 141 ± 52 µm2/cm3 in crushing, 91 ± 9 µm2/cm3 in dry milling, and 85 ± 7 µm2/cm3 in wet milling). Concentrations in all operations showed a fair to excellent between-day repeatability but they were significantly different within stations of each operation. Measured LDSA concentrations did not show a linear correlation between different instruments, except for crushing.

Acknowledgments

This research was funded by the National Institute of Occupational Safety and Health (Grant No. OH010662). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the Centers for Disease Control and Prevention or the Department of Health and Human Services. Authors are thankful to Mr. Karl Braun from Cleveland-Cliffs Inc. for his insightful consultation and assistance in the data collection. Authors are grateful to Dr. Tran Huynh and Dr. Harrison Quick for their insights regarding the statistical analyses.

Disclaimer

The authors deny any conflict of interest in the present study.

Additional information

Funding

This research was funded by the National Institute of Occupational Safety and Health (Grant No. OH010662).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.