613
Views
5
CrossRef citations to date
0
Altmetric
Articles

Chemical permeation of similar disposable nitrile gloves exposed to volatile organic compounds with different polarities: Part 1: Product variation

, , &
 

Abstract

Many glove manufacturers of chemical protective clothing produce chemical resistance guides to aid in selection of an appropriate product. Some manufacturers provide permeation data, but others provide a general rating system without reporting testing their own products. A critical issue is that considerable variation in chemical resistance, both with breakthrough times and steady-state permeation rates, have been observed with disposable nitrile gloves. The main purpose of this study was to determine whether significant variation in chemical resistance was present between products from a single brand that provided a generalized chemical resistant guide. The objective was to determine if the ratings noted on the chemical resistance guide were sufficient for protection against chemical permeation. The chemical permeation of ten disposable nitrile gloves against three organic solvents of varying polarity (cyclohexane, tert-butanol, and cyclohexanol) was performed in triplicate. Despite the similar chemical resistant ratings for the products, significant variation in both breakthrough times and steady-state permeation rates were observed among the ten nitrile gloves. The largest variation in breakthrough time was about 8-fold. The largest variation in steady-state permeation rate was about 177-fold. A proposed chemical resistance rating system was used to further evaluate the variation in performance, as it would relate to similar rating systems used by glove manufacturers or brands. Polarity played a role in the observed performance, with the nitrile gloves providing increased protection with an increase in solvent polarity, more notably with the dielectric constant. Using a proposed rating system, the percentages of products rating as excellent to good were 20% (cyclohexane), 60% (tert-butanol), and 90% (cyclohexanol). Ultimately, the ratings noted on the general chemical resistance guide were not sufficient for worker protection against chemical permeation. It is not valid to assume that little variation should exist among the different glove products under a same brand or based on the use of generic chemical resistant data. When critical, occupational health and safety professionals should base glove selection on product-specific chemical permeation data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.