369
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Particle-phase collection efficiency of the OVS and IFV Pro personal pesticide samplers

, & ORCID Icon
 

Abstract

The inhalable aerosol sampling criterion has been developed to characterize the efficiency of particles entering the nose and/or mouth. However, pesticides can exist in the air in both vapor and particulate phases, which complicates exposure assessments. The American Conference of Governmental Industrial Hygienists (ACGIH) has established an IFV (inhalable fraction and vapor) endnote for chemicals such as many pesticides that need to be evaluated for both their inhalable fraction and vapor concentrations to fully characterize worker exposures. The purpose of this study was to evaluate the particle-phase collection efficiency of a commonly-used pesticide sampler, the OSHA Versatile Sampler (OVS) as well as a recently developed sampler, the IFV Pro. The OVS was not designed as an inhalable aerosol sampler, whereas the IFV Pro contains a sampling head scaled to that of the Institute of Medicine (IOM) sampler, which is known to closely follow the inhalable sampling criterion. Laboratory experiments involving a vertical-flow, low-velocity scheme, and finely graded test dusts with known median aerodynamic diameter were used to determine sampler collection efficiencies. The collection efficiency of the OVS was evaluated as recommended by the manufacturer and after two modifications made to potentially improve its collection efficiency. The OVS was found to substantially under-sample relative to the inhalable criterion, and the two modifications did not provide substantial improvements to the original configuration. Conversely, the collection efficiency of the IFV Pro was found to compare closely to that of the IOM, although collecting 9% more mass. When applied side-by-side with the OVS sampler in a chamber into which ethylene glycol was sprayed as a proxy for a pesticide, the IFV Pro collected an average of 1.9-fold more mass than the OVS for the same flow rate and sample time.

Acknowledgments

The authors would like to thank Mr. Ralph Altmaier for his helpful assistance while conducting this research, and Mr. Michael Murphy for suggesting the need for, and helping to initiate, this research.

Data availability statement

The data that support the findings of this study are available from the corresponding author, P. T. O, upon reasonable request.

Additional information

Funding

This research was funded by the National Institute of Environmental Health Sciences through the University of Iowa Environmental Health Sciences Research Center (NIEHS/NIH P30 ES005605). Student support was provided during the conduct of this research by the Heartland Center for Occupational Health and Safety, a NIOSH/CDC Education and Research Center (T42OH008491).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.