408
Views
0
CrossRef citations to date
0
Altmetric
Report

Levels and control of welding fume exposure to total particulate, hexavalent chromium, and manganese in contracted activities in an oil refinery setting (2008–2018)

, &
 

Abstract

In response to increasing focus on occupational exposures to welding fume, a 10-year series of personal exposure measurements was analyzed for the two main welding processes (Shielded Metal Arc Welding or Stick and Tungsten Inert Gas welding or TIG) used in an oil refinery setting. Exposures from ancillary gouging and grinding were also analyzed. The operations were conducted under a permit-to-work system, which stipulated control measures in the form of ventilation and respiratory protective equipment (RPE) depending on the work environment, base metal, and welding process. The analysis focused on three health hazards of interest: total particulate (TP); hexavalent chromium (Cr (VI)); and manganese (Mn). The study’s aims were the analysis of exposure levels related to operational conditions to verify the adequacy of required control measures and the generation of quantitative information for the development of predictive exposure models. Arithmetic mean exposures were 2.01 mg/m3 for TP (n = 94), 13.86 µg/m3 for Cr (VI) (n = 160), and 0.024 mg/m3 for Mn (n = 95). Requirements and practices for ventilation and use of RPE appeared adequate for maintaining exposure levels below maximum use concentrations. Predictive models for mean exposure levels were developed using multiple linear regression. Different patterns emerged for TP, Cr (VI), and Mn exposure determinants. Enclosed or confined work environments were associated with elevated exposure levels, regardless of the provision of local exhaust or general dilution ventilation. Carbon arc, used with gouging and grinding, contributed significantly to TP exposure (p = 0.006). The relative TP source strengths of the two main welding processes were comparable to the literature data. For Cr (VI), stick welding was associated with approximately 50-fold (p < 0.001) higher exposure potential than TIG welding. For Mn, this difference was approximately 2.5-fold. Differences were observed across the three analytes in exposure reduction efficiency of local exhaust ventilation (LEV) compared to natural ventilation, possibly due to ineffective use in confined spaces. These findings contribute to the overall understanding of TP, Cr (VI), and Mn exposures from welding and required controls in an oil refinery setting.

Acknowledgments

The authors wish to express their gratitude to the welders who agreed to participate in the exposure monitoring events and to the colleagues in the refinery industrial hygiene team who conducted the monitoring and diligently recorded the contextual data for future analysis. The data collection was funded under the regular refinery operational budget. The authors conducted the analysis and prepared the manuscript as part of their regular employment.

Data availability statement

The data that support the findings of this study are available from the corresponding author, [JU], upon reasonable request.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.