739
Views
6
CrossRef citations to date
0
Altmetric
Research Papers

Comparison of early vascular morphological changes between bioresorbable poly-L-lactic acid scaffolds and metallic stents in porcine iliac arteries

, , , , &
Pages 29-38 | Received 21 Nov 2016, Accepted 04 Jan 2017, Published online: 08 Feb 2017
 

ABSTRACT

Bioresorbable scaffolds have the potential to overcome several problems associated with metallic stents. Bioresorbable poly-L-lactic acid (PLLA) scaffold implantation for the treatment of peripheral artery disease has already been reported in animal models and clinical trials; however, no studies comparing PLLA scaffolds and bare metal stents (BMSs) with regard to early vascular morphological changes, identified using intravascular ultrasound (IVUS) analysis, have been reported. In this study, PLLA scaffolds and BMSs were implanted bilaterally in iliac arteries of five miniature pigs. Digital subtraction angiography and IVUS were performed before and immediately after stent implantation and at 6-week follow-up. All PLLA scaffolds and BMSs were patent at 6-week follow-up. Per IVUS analysis, the percent area stenosis did not significantly differ between PLLA scaffolds and BMSs (65.7% vs. 67.2%, P = .761). Furthermore, percent vessel lumen change also did not differ significantly. Neointima formation (the neointimal area plus medial area) was significantly less with PLLA scaffolds than with BMSs (15.65 mm2 vs. 25.69 mm2, P < .001). In conclusion, based on IVUS results, short-term results after stent implantation in porcine iliac arteries were comparable between PLLA scaffolds and BMSs. Therefore, PLLA scaffolds are safe and feasible for implantation in peripheral arteries.

DISCLOSURE OF POTENTIAL CONFLICTS OF INTEREST

Yasuhito Sekimoto received funding from Kyoto Medical Planning Co., Ltd. The other co-authors have no competing interests to declare.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.