187
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Numerical Simulations Using a Molecular Mechanics-based Finite Element Approach: Application on Boron-Nitride Armchair Nanotubes

&
Pages 203-211 | Published online: 29 Jun 2011
 

Abstract

Boron-nitride nanotubes can be thought of as rolled sheets of plane hexagonal boron-nitride. In this paper a computationally efficient modeling approach is pursued. The honeycomb-like structure of the lattice is exploited and a special finite element is developed based on this hexagonal pattern. The internal energy is calculated using semi-empirical molecular mechanics functions and energy minimization algorithms are applied in order to obtain the equilibrium state under various loading conditions. Results are found to be in agreement with data found in the open literature. The introduced modeling approach provides a computationally efficient way to analyze nanotubes without the need of large-scale simulations, while it does not require lattice periodicity and structural perfection.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.