112
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Two-Temperature Generalized Thermoelasticity in a Fiber-Reinforced Hollow Cylinder Under Thermal Shock

, &
Pages 367-390 | Published online: 24 Jul 2013
 

Abstract

This paper deals with the thermoelastic interactions in a transversely isotropic, infinite hollow cylinder in which the boundaries are stress-free. There is no temperature in the inner boundary and heat flux is applied on the outer boundary. In the context of two-temperature generalized thermoelasticity theory, the three-phase-lag thermoelastic model and Green Naghdi model III (GN-III) are employed to study the thermophysical quantities. The Laplace transform is used to transform the coupled equations into the Laplace transformed domain. Then two different methods, the Galerkin finite element technique and eigen-value approach, are employed to solve the resulting equations in the transformed domain. The numerical inversion of the transform is carried out using Fourier-series expansion techniques. The physical quantities have been computed numerically and presented graphically in a number of figures. A comparison of the results for different theories (GN-III and three-phase-lag model) and for two different methods are presented.

Acknowledgments

We are grateful to Prof. S. C. Bose of the Department of Applied Mathematics, University of Calcutta for his kind help and guidance in the preparation of the paper. We also express our sincere thanks to the reviewers for their valuable suggestions for the improvement of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.