256
Views
5
CrossRef citations to date
0
Altmetric
Articles

FoxM1 Regulates Proliferation and Apoptosis of Human Neuroblastoma Cell through PI3K/AKT Pathway

, , , , , & show all
Pages 355-370 | Received 04 Aug 2020, Accepted 11 Aug 2020, Published online: 09 Sep 2020
 

Abstract

Aim: This study investigated the effect of FoxM1 on the biological behavior of neuroblastoma (NB) cells in vitro and the association between FoxM1 and PI3K/AKT pathways in NB cell lines. Materials and methods: Recombinant plasmid pcDNA3.1 (+)-FoxM1 and FoxM1-specific small interfering RNA (siRNA) were transfected into IMR-32 cells by liposome transfection. The expression of FoxM1, AKT and PI3K were determined by qRT-PCR and western blotting. The effect of FoxM1 and PI3K/AKT pathways on the cell cycles and apoptosis were analyzed by flow cytometry. Cell viability and proliferation ability were assessed by CCK8 and colony formation assay. Results: Knockdown of FoxM1 promoted NB cell apoptosis and G1-phase cell cycle arrest significantly, increased the expression of apoptosis-related proteins, and suppressed the phospho-activation of PI3K and AKT. Over-expression of FoxM1 had the opposite effects. Conclusion: FoxM1 knockdown inhibited NB cell proliferation and induced apoptosis through inhibiting activation of PI3K and AKT.

Acknowledgment

This study was supported by Sichuan Health and Wellness Committee: Universal application project, (Grant No.: 17PJ593).

Disclosure statement

The authors declare no conflict of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.