144
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Consequences of ignition timing on a hydrogen-fueled engine at various equivalence ratio

ORCID Icon & ORCID Icon
Pages 6556-6567 | Received 17 Feb 2022, Accepted 05 Jul 2022, Published online: 18 Jul 2022
 

ABSTRACT

The energy crisis in the transportation sector directs researchers to look for renewable alternative energy sources. Among all available, hydrogen is one of the prominent contenders that can be renewed and available on a large scale and is carbon-free. The study suggests hydrogen is a better fuel for SI engines than CI engines. However, its feasibility still needs to be investigated. In the present experimental study, a hydrogen-fueled SI engine is tested for various equivalence ratios (ϕ) and ignition timing (IT) at a compression ratio (CR) of 14:1. The outcomes show that the brake thermal efficiency (BTE) increases by 1.07% with increasing ϕ, while a slightly retarded IT exhibits the best figure. There is an average 1.42% increase per ϕ from gasoline noticed at ϕ 0.6, which increased to 2.12% at ϕ 0.8. The cylinder pressure and net heat release rate improve and advance with retarding IT and increasing ϕ. The flame development period (CA10) continuously reduces with increasing ϕ by an average 1.93%/ϕ change and retarding IT by 2.17%/2°CA ignition retard, due to increased mass of hydrogen and increased cylinder temperature. While flame propagation period (CA10-90) reduces with increasing ϕ and reduces to a minimum with retarding IT and then increase. The maximum cylinder temperature (Tmax) and exhaust gas temperature (EGT) increase with increasing ϕ by 3.28% and 3.62%, respectively, while Tmax reduces with retarding IT, resulting in a reduction in NOx emission. The EGT increases with retarding IT. The NOx emissions increase with ϕ by an average of 4.72%; however, at higher ϕ = 0.8, the NOx emissions are 2.51% lower than gasoline for most of the retarded IT. At a retarded IT, hydrogen performs similarly to gasoline at moderate NOx emissions. The high CR helps reduce volumetric losses reflected in BTE, found above gasoline despite less fuel energy supplied than gasoline. Although NOx emissions are controlled by retarding IT, an efficiently controlling IT resulted in a severe drop in BTE.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.