90
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effects of activated carbon particle size on the formation of hydrate in fully/partially saturated liquid phase system

, , ORCID Icon, , , & show all
Pages 4839-4852 | Received 17 May 2022, Accepted 31 Oct 2022, Published online: 01 May 2023
 

ABSTRACT

As a porous medium with rich pore structure, activated carbon (AC) was once considered the best carrier for hydrate storage and transportation. However, the harsh conditions of the hydrate reaction in the wet carbon environment have always limited the sufficient and rapid formation of hydrate. Therefore, the influences of particle size (4–8, 8–16, 20–40 and 100 mesh) and liquid phase saturation (fully/partially saturated) in the sodium dodecyl sulfate system on hydrate reaction were investigated. The results showed that small particle in the fully saturated liquid phase system led to the increase in hydrate generation rate, with the highest hydrate reaction rate of 3.16 mmol/min in the 100 mesh AC layer, which was 1.7–2.9 times higher than other AC layers. The gas storage capability of the 4–8 mesh AC layer with a water saturation of 70% was the highest among all systems, reaching 0.198 mol/mol. The saturation of the liquid phase induced the nucleation and growth of hydrates. Adherently growing hydrates of fully saturated liquid phase systems and mushroom-like hydrates of partially saturated liquid phase systems were found in turn. This research facilitates the commercialization of AC-based hydrate technology.

Disclosure statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplemental data

Supplemental data for this article can be accessed online at https://doi.org/10.1080/15567036.2023.2205363.

Additional information

Funding

This work was supported by the Doctoral Start-up Foundation of Liaoning Province (2019-BS-159), Scientific Research Fund of Liaoning Provincial Education Department (LJKZ0381) and Key Scientific Research Project of Liaoning Provincial Department of Education (L2020002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.