899
Views
110
CrossRef citations to date
0
Altmetric
Original Articles

Thermal Rectification Enabled by Near-Field Radiative Heat Transfer Between Intrinsic Silicon and a Dissimilar Material

&
Pages 337-348 | Received 08 Oct 2012, Accepted 10 Feb 2013, Published online: 05 Sep 2013
 

Abstract

Thermal rectification has recently attracted great attention because it could allow heat to flow in a preferred direction and may have promising applications in thermal management and energy systems. In addition to phonon engineering, photon transport at the near-field regime has been recently proposed to realize thermal rectification between planar structures. In the present study, the thermal rectification effect enabled by near-field thermal radiation between intrinsic silicon and other materials was investigated at various temperatures and vacuum gap distances. Strong thermal rectification between intrinsic Si and doped Si (rectification R = 2.7) and between intrinsic Si and SiO2 (R = 9.9) can be achieved with a 5 nm vacuum gap at temperatures of 1000 and 300 K. Rectification larger than one can be obtained in sub-10 nm vacuum gaps for the former configuration and sub-20 nm gaps for the latter configuration. A thermal rectifier made of gold and intrinsic Si is shown to have a rectification factor around 0.85 with temperatures of 600 and 300 K at a wide range of vacuum gaps from 100 to 500 nm. The physical mechanisms of the rectification effect in the three configurations are elucidated, and each of the proposed thermal rectifiers may have its own advantage for applications dealing with different temperatures and vacuum distances.

Acknowledgments

This study was mainly supported by the Department of Energy (DE-FG02-06ER46343). L.P.W. would like to thank the Startup Fund program at Arizona State University. Z.M.Z. would also like to thank the National Science of Foundation (CBET-1235975).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.