368
Views
0
CrossRef citations to date
0
Altmetric
Article

Hyperbolic volume and surface phonon polaritons excited in an ultrathin hyperbolic slab: connection of dispersion and topology

ORCID Icon & ORCID Icon
Pages 64-71 | Received 02 Nov 2020, Accepted 24 Jan 2021, Published online: 04 Feb 2021
 

ABSTRACT

Hyperbolic volume and surface phonon polaritons have been studied extensively for enhancing the near-field radiative heat transfer (NFRHT) between hyperbolic materials. Hyperbolic volume phonon polaritons (HVPPs) describe propagating electromagnetic waves in hyperbolic materials while evanescent waves are required for excitation of hyperbolic surface phonon polaritons (HSPPs). Therefore, the dispersion relations of HVPPs and HSPPs are distinct. Here we study the interaction of HVPPs and HSPPs within the context of NFRHT between hyperbolic materials. We find that the dispersion curves of HVPPs and HSPPs in an ultrathin hyperbolic slab can connect smoothly. Particularly, we find that the topology of HVPPs can be convex and flat, rather than concave, and can be controlled by tuning the thickness of the hyperbolic slab, which has not been reported in published literature. We believe our findings presented here may help to deepen our understanding on the interaction between HVPPs and HSPPs, as well as the knowledge on the topology of HVPPs in hyperbolic materials.

Conflicts of interest

There are no conflicts to declare.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [no. 51576004].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.