220
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Neutralization of the eye and skin irritant benzalkonium chloride using UVC radiation

, &
Pages 78-84 | Received 06 Jul 2020, Accepted 09 Mar 2021, Published online: 26 Mar 2021
 

Abstract

Purpose

Benzalkonium chloride (BAK) is a widely used disinfectant and preservative which is effective against a wide range of viruses (e.g. SARS-CoV and SARS-CoV-2), bacteria and fungi. However, it is toxic to the eye and skin. This study investigated the neutralization of BAK using ultraviolet C (UVC) radiation as an effort to reduce BAK toxicity potential.

Methods

BAK solutions were irradiated with a germicidal UVC lamp at various doses. Human corneal epithelial cells (HCEC) were then exposed to the UVC-irradiated BAK solutions for 5 minutes. After exposure, the cultures were assessed for metabolic activity using PrestoBlue; for cell viability using confocal microscopy with viability dyes; and for tight junction proteins using immunofluorescence staining for zonula occludens (ZO)-1.

Results

UVC radiation reduced BAK toxicity on cell metabolic activity in a dose-dependent manner. When the solution depth of BAK was 1.7 mm, the UVC doses needed to completely neutralize the toxicity of BAK 0.005% and 0.01% were 2.093 J/cm2 and 8.374 J/cm2, respectively. The cultures treated with UVC-neutralized BAK showed similar cell metabolic activity and cell viability to those treated with phosphate buffered saline (PBS) (p = 0.806 ∼ 1.000). The expression of ZO-1 was greatly disturbed by untreated BAK; in contrast, ZO-1 proteins were well maintained after exposure to UVC-neutralized BAK.

Conclusions

Our study demonstrates that the cell toxicity of BAK can be neutralized by UVC radiation, which provides a unique way of detoxifying BAK residues. This finding may be of great value in utilizing the antimicrobial efficacy of BAK (e.g. fighting against SARS-CoV-2) while minimizing its potential hazards to human health and the environment.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the Natural Sciences and Engineering Research Council of Canada under Grant RGPIN 9747–2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.