1,670
Views
25
CrossRef citations to date
0
Altmetric
Research Paper

Regulation of OCT2 transcriptional repression by histone acetylation in renal cell carcinoma

, , ORCID Icon, , , & show all
Pages 791-803 | Received 11 Dec 2018, Accepted 26 Apr 2019, Published online: 15 May 2019
 

ABSTRACT

Renal cell carcinoma (RCC) is a common malignant tumour affecting the urinary system, and multidrug resistance is one of the major reasons why chemotherapy for this type of cancer often fails. Previous studies have shown that loss of the human organic cation transporter OCT2 is the main factor contributing to oxaliplatin resistance in RCC, and that DNA hypermethylation and histone methylation play important roles in the transcriptional repression of OCT2 in RCC. In this study, we found that histone acetylation also regulates OCT2 repression in RCC and elucidated the underlying mechanisms. In normal renal cells, HDAC7 combines with MYC at the OCT2 promoter, resulting in a decrease in free HDAC7, which in turn increases the levels of H3K18ac and H3K27ac at the OCT2 promotor and activates OCT2 expression. In RCC cells, however, the interaction between HDAC7 and MYC does not occur, which leads a high abundance of HDAC7 and low levels of H3K18ac and H3K27ac at the OCT2 promoter, thereby resulting in the inhibition of OCT2 transcription. We found that combined treatment using the DNA methylation inhibitor decitabine and the histone deacetylase inhibitor vorinostat significantly increased the expression of OCT2 in RCC cell lines, which sensitized these cells to oxaliplatin. We accordingly propose that the combination of anticancer agents and epigenetic drugs can provide a novel chemotherapeutic regimen.

Disclosure statement

No potential conflict of interest was reported by the authors.

Supplementary Materials

Supplemental data for this article can be accessed here.

Additional information

Funding

This project was supported by National Natural Science Foundation of China [81773817], National Key R&D Program of China [No. 2017YFC0908600, 2017YFE0102200], and the National Natural Science Foundation of China [No. 81702801].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.