1,522
Views
10
CrossRef citations to date
0
Altmetric
Research Paper

Reliability of DNA methylation measures using Illumina methylation BeadChip

&
Pages 495-502 | Received 05 Mar 2020, Accepted 24 Jul 2020, Published online: 15 Aug 2020
 

ABSTRACT

Illumina BeadChips are widely utilized in epigenome-wide association studies (EWAS). Several studies have reported that many probes on these arrays have poor reliability. Here, we compare different pre-processing methods to improve intra-class correlation coefficients (ICC). We describe the characteristics of ICC across the genome, within and between studies, and across different array platforms. Using technical duplicates from 128 subjects, we find that with raw data only 22.5% of the CpGs on 450 K array have ‘acceptable’ ICCs (>0.5). Data preprocessing steps, such as background correction and dye bias correction, can reduce technical noise and improve the percentage to 38.5%. Similar to previous studies, we found that ICC is associated with CpG methylation level such that 83% of CpGs with intermediate methylation (0.1< beta-value <0.9) have acceptable ICCs, whereas only 21% of CpGs with low or high methylation (beta-value <0.1 or >0.9) have acceptable ICCs. ICC is also correlated with CpG methylation variance; after mutual adjustment for beta-value and variance, only variance remains correlated. Many CpGs with poor ICCs (<0.5) are located in biologically important regulatory regions, including gene promoters and CpG islands. Poor ICC at these sites appears to be a consequence of low biologic variation among individuals rather than increased technical measurement variation. ICCs quality classifications are highly concordant across different array platforms and across different studies. We find that ICC can be reliably estimated with 30 pairs of duplicate samples. CpGs with acceptable ICC have higher study power and are more commonly reported in published epigenome-wide studies.

Disclosure statement

No potential conflict of interest was reported by the authors.

Supplementary material

Supplemental data for this article can be accessed here.

Additional information

Funding

This work was supported by Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (Z01 ES049033, Z01 ES049032, Z01 ES044005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.