59
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Parametric Bootstrap Tests for Determining the Number of Principal Components

&
Pages 674-691 | Received 19 Dec 2012, Accepted 21 Jul 2013, Published online: 16 May 2014
 

Abstract

Principal component analysis is a multivariate technique widely used in dimensionality reduction. The ideal number of principal components retained should be defined when one is dealing with high-dimensional data. Some criteria for this choice were proposed in the literature. Most of them have serious limitations, such as normality assumptions, subjective analysis, and asymptotic properties. This study aims to propose two new tests using the parametric bootstrap for determining the optimal number of principal components (PC) retained for subsequent analysis, based on the amount of the total variation accounted for by the k first principal components. The performances of these tests were compared among themselves and with those of Fujikoshi (1980) and Gebert and Ferreira (2010) through Monte Carlo simulations. Under multivariate normality the two proposed parametric bootstrap tests are recommended. Under nonnormality the test of Gebert and Ferreira (2010) is recommended. The three bootstrap tests surpass the Fujikoshi test in most circumstances.

AMS Subject Classification:

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.