181
Views
20
CrossRef citations to date
0
Altmetric
Articles

Reduced filler flocculation in the silica-filled styrene–butadiene–glycidyl methacrylate terpolymer

, , , , , & show all
Pages 137-149 | Received 12 Sep 2014, Accepted 08 Dec 2014, Published online: 02 Jan 2015
 

Abstract

This study presents a method to improve the dispersion of silica in rubber compounds using a styrene-butadiene-glycidyl methacrylate terpolymer (GMA-SBR) synthesized by cold emulsion polymerization. It has been demonstrated that silica particles in conventional rubbers tend to agglomerate during storage, as well as at the onset of vulcanization, because of their polarity. GMA-SBR can improve the compatibility with silica by the formation of covalent bonds between the epoxy groups of GMA-SBR and silanol groups on the silica surface. SBR 1721 and GMA-SBR silica-filled compounds were prepared without curatives by a kneader and a two-roll mill. After compounding, the reaction of the epoxy group, filler flocculation, and morphology of the compounds were analyzed using infrared spectroscopy, a rubber process analyzer, and transmission electron microscopy, respectively. In addition, the content of bound rubber in the compounds was determined by extracting the unbound rubber material with toluene. The GMA-SBR silica-filled compounds had a higher bound rubber content and exhibited significantly different filler flocculation and silica dispersion behaviors compared with the SBR 1721 silica-filled compounds.

Additional information

Funding

This work was supported by the BK21 PLUS Centre for Advanced Chemical Technology [grant number 21A20131800002], Republic of Korea and the CEFV (Center for Environmentally Friendly Vehicle) as Global-Top Project of KMOE (Ministry of Environment, Korea) [grant number 10040818], Republic of Korea.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.