1,984
Views
37
CrossRef citations to date
0
Altmetric
Research papers

Managing reservoir sediment release in dam removal projects: An approach informed by physical and numerical modelling of non‐cohesive sediment

, , , , , & show all
Pages 433-452 | Received 11 Sep 2008, Accepted 05 May 2009, Published online: 23 Aug 2010
 

Abstract

Sediment management is frequently the most challenging concern in dam removal but there is as yet little guidance available to resource managers. For those rivers with beds composed primarily of non‐cohesive sediments, we document recent numerical and physical modelling of two processes critical to evaluating the effects of dam removal: the morphologic response to a sediment pulse, and the infiltration of fine sediment into coarser bed material. We demonstrate that (1) one‐dimensional numerical modelling of sediment pulses can simulate reach‐averaged transport and deposition over tens of kilometres, with sufficient certainty for managers to make informed decisions; (2) physical modelling of a coarse sediment pulse moving through an armoured pool‐bar complex shows deposition in pool tails and along bar margins while maintaining channel complexity and pool depth similar to pre‐pulse conditions; (3) physical modelling and theoretical analysis show that fine sediment will infiltrate into an immobile coarse channel bed to only a few median bed material particle diameters. We develop a generic approach to sediment management during dam removal using our experimental understanding to guide baseline data requirements, likely environmental constraints, and alternative removal strategies. In uncontaminated, non‐cohesive reservoir sediments we conclude that the management impacts of rapid sediment release may be of limited magnitude in many situations, and so the choice of dam removal strategy merits site‐specific evaluation of the environmental impacts associated with a full range of alternatives.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.