158
Views
13
CrossRef citations to date
0
Altmetric
Research articles

Accounting for uniformly distributed pipe demand in WDN analysis: enhanced GGA

, &
Pages 243-255 | Received 10 Sep 2009, Accepted 03 May 2010, Published online: 10 Aug 2010
 

Abstract

The global gradient algorithm (GGA) is the most widely adopted method for steady-state analysis of water distribution networks. It is used to solve the non-linear system of equations describing mass and energy conservation laws. Nonetheless, it has been recently proved that the usually adopted representation of distributed pipe demands as lumped withdrawals at ending nodes causes inconsistent calibration results and pipe head loss errors which could be non negligible in some network conditions. The original GGA has been contextually modified by introducing a correction of pipe hydraulic resistance under the assumptions of a friction factor independent from the flow regime. This paper aims at providing researchers and software developers with a general formulation of the GGA which entails both the adoption of any generic monomial head loss formula and pipe hydraulic resistance dependence on flow regime. The results could be easily extended to other methods of network analysis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.