1,164
Views
35
CrossRef citations to date
0
Altmetric
Research Article

Remote sensing techniques for predicting evapotranspiration from mixed vegetated surfaces

, , , &
Pages 380-393 | Received 24 Oct 2013, Accepted 26 Feb 2014, Published online: 13 May 2014
 

Abstract

Evapotranspiration (ET) is a key component of the hydrological cycle however it is also the most difficult factor to quantify. In recent decades, estimating ET has been improved by advances in remote sensing, particularly in agricultural studies. However, quantifying ET from mixed vegetation environs, particularly urban parklands, is still challenging due to the heterogeneity of plant species, canopy covers, microclimates, and because of costly methodological requirements. Several studies have recently been conducted in agriculture and forestry which may be useful for mixed landscape vegetation studies with some modifications. This review describes general remote sensing-based approaches to estimate ET and describes their advantages and disadvantages. Most of these approaches need extensive time investment, medium to high skill levels and are quite expensive. However, in addition to the reviewed methods, the authors recommend combining remotely sensed vegetation indices and ground-based techniques for ET estimation of mixed landscape vegetation such as urban parklands.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.