324
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

A novel hybrid entropy-clustering approach for optimal placement of pressure sensors for leakage detection in water distribution systems under uncertainty

, ORCID Icon, , ORCID Icon &
Pages 185-198 | Received 10 Apr 2019, Accepted 16 Apr 2020, Published online: 07 May 2020
 

ABSTRACT

This study presents a novel hybrid entropy-clustering framework for placing pressure sensors in water distribution systems (WDS) to detect leakage. Leakages are simulated at all potential nodes of WDS, and then potential pressure sensors (PPS) in WDS are classified using a K-means clustering algorithm. Transinformation entropy for each potential pair of PPS was also computed, which in turn helped to reduce redundant information. PPS locations were subsequently optimized using a multi-objective optimization model. Furthermore, to capture the sensitivity of sensors' layout in WDS to sensor error, a fuzzy-based analysis is integrated with a multi-objective optimization model. Finally, the best compromise solution of PPS placement in each category was selected using an ELECTRE multi-criteria decision making model. Reducing redundant information of pressure sensors based on information theory and choosing the best possible solution based on the ELECTRE model are the main novelties of this study. Results of C-Town WDS attest to the proposed framework' efficiency.

Acknowledgements

We would like to express our gratitude to Mr. Ehsan Raei and Ms. Shokoufeh Pourshahabi for sharing their knowledge, research experiences and results with us during this study.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed here

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.