234
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Fractality in water distribution networks: application to criticality analysis and optimal rehabilitation

, ORCID Icon &
Pages 885-895 | Received 19 Mar 2020, Accepted 21 Jun 2021, Published online: 08 Jul 2021
 

ABSTRACT

Fractals have been identified as a common feature in many natural and artificial networks that exhibit self-similarity of the topological patterns, i.e. different parts of the system have similar structures to each other as well as to the whole system. This study investigates the fractality in water distribution networks (WDNs) and the application of the fractal property in WDNs analysis. Specifically, we explore the existence of fractal topological patterns in eight real-world WDNs of different complexities by using the box-covering algorithm. The results demonstrate all of the studied WDNs are fractal. Moreover, the application of the fractal property is demonstrated via critical pipe identification and optimal rehabilitation of benchmark real-world WDNs. All results show that the fractal-based approach can achieve better or equally good solutions compared with conventional methods in a much more efficient way, e.g. via automation of some processes or significant reduction in the search space/components to consider.

Acknowledgements

The authors would like to thank Prof Wolfgang Rauch, Prof Robert Sitzenfrei, and Prof Manfred Kleidorfer at the Unit of Environmental Engineering, Faculty of Civil Engineering, Institute of Infrastructure, University of Innsbruck, for providing the hydraulic model of the Alpine water distribution system.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed https://doi.org/10.1080/1573062X.2021.1948076

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.